Semi-supervised Biomedical Translation with Cycle Wasserstein Regression GANs

نویسندگان

  • Matthew B.A. McDermott
  • Tom Yan
  • Tristan Naumann
  • Nathan Hunt
  • Harini Suresh
  • Peter Szolovits
  • Marzyeh Ghassemi
چکیده

The biomedical field offers many learning tasks that share unique challenges: large amounts of unpaired data, and a high cost to generate labels. In this work, we develop a method to address these issues with semi-supervised learning in regression tasks (e.g., translation from source to target). Our model uses adversarial signals to learn from unpaired datapoints, and imposes a cycle-loss reconstruction error penalty to regularize mappings in either direction against one another. We first evaluate our method on synthetic experiments, demonstrating two primary advantages of the system: 1) distribution matching via the adversarial loss and 2) regularization towards invertible mappings via the cycle loss. We then show a regularization effect and improved performance when paired data is supplemented by additional unpaired data on two real biomedical regression tasks: estimating the physiological effect of medical treatments, and extrapolating gene expression (transcriptomics) signals. Our proposed technique is a promising initial step towards more robust use of adversarial signals in semi-supervised regression, and could be useful for other tasks (e.g., causal inference or modality translation) in the biomedical field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian GAN

Generative adversarial networks (GANs) can implicitly learn rich distributions over images, audio, and data which are hard to model with an explicit likelihood. We present a practical Bayesian formulation for unsupervised and semi-supervised learning with GANs. Within this framework, we use stochastic gradient Hamiltonian Monte Carlo to marginalize the weights of the generator and discriminator...

متن کامل

Semi-Supervised Learning with IPM-based GANs: an Empirical Study

We present an empirical investigation of a recent class of Generative Adversarial Networks (GANs) using Integral Probability Metrics (IPM) and their performance for semi-supervised learning. IPM-based GANs like Wasserstein GAN, Fisher GAN and Sobolev GAN have desirable properties in terms of theoretical understanding, training stability, and a meaningful loss. In this work we investigate how th...

متن کامل

Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect

Despite being impactful on a variety of problems and applications, the generative adversarial nets (GANs) are remarkably difficult to train. This issue is formally analyzed by Arjovsky & Bottou (2017), who also propose an alternative direction to avoid the caveats in the minmax two-player training of GANs. The corresponding algorithm, called Wasserstein GAN (WGAN), hinges on the 1-Lipschitz con...

متن کامل

Semi-Supervised Multitask Learning on Multispectral Satellite Images Using Wasserstein Generative Adversarial Networks (GANs) for Predicting Poverty

Obtaining reliable data describing local poverty metrics at a granularity that is informative to policy-makers requires expensive and logistically difficult surveys, particularly in the developing world. Not surprisingly, the poverty stricken regions are also the ones which have a high probability of being a war zone, have poor infrastructure and sometimes have governments that do not cooperate...

متن کامل

Attacking Speaker Recognition With Deep Generative Models

In this paper we investigate the ability of generative adversarial networks (GANs) to synthesize spoofing attacks on modern speaker recognition systems. We first show that samples generated with SampleRNN and WaveNet are unable to fool a CNN-based speaker recognition system. We propose a modification of the Wasserstein GAN objective function to make use of data that is real but not from the cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018